
A STUDYOF QUALITY OFSERVICECOMMUNICATION FORHIGH-SPEED

PACKET-SWITCHINGCOMPUTERSUB-NETWORKS

By

Zhenqian Cui

,!t._Lf0"_,'A.q.._.q._

A Thesis

Submitted to the Faculty of

Mississippi State University

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Computer Science

in the Department of Computer Science

Mississippi State, Mississippi

May 1999

C.z.',_ o2 r_-S _/

A STUDY OF QUALITY OF SERVICE COMMUNICATION FOR HIGH-SPEED

PACKET-SWITCHING COMPUTER SUB-NETWORKS

By

Zhenqian Cui

Approved:

Anthony Skjellum

Associate Professor of Computer Science

(Major Professor and Thesis Director)

Bradley D. Carter

Professor of Computer Science

(Committee Member)

Raghu Machiraju

Assistant Professor of Computer Science

(Committee Member)

Susan M. Bridges

Associate Professor of Computer Science
Graduate of Coordinator of the

Department of Computer Science

A. Wayne Bennett

Dean of the College of

Engineering

Name:Zhenqian Cui

Date of Degree: May 13, 1999

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Anthony Skjellum

Title of Study: A STUDY OF QUALITY OF SERVICE COMMUNICATION FOR
HIGH-SPEED PACKET-SWITCHING COMPUTER SUB-NETWORKS

Pages in Study: 80

Candidate for Degree of Master of Science

In this thesis, we analyze various factors that affect quality of service (QoS)

communication in high-speed, packet-switching sub-networks. We hypothesize that sub-

network-wide bandwidth reservation and guaranteed CPU processing power at endpoint

systems for handling data traffic are indispensable to achieving hard end-to-end quality of

service. Different bandwidth reservation strategies, traffic characterization schemes, and

scheduling algorithms affect the network resources and CPU usage as well as the extent

that QoS can be achieved. In order to analyze those factors, we design and implement a

communication layer. Our experimental analysis supports our research hypothesis. The

Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our

analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-

end quality of service in a high-speed sub-network. Analysis of the IEEE 802.1p

protocol also supports the research hypothesis.

ACKNOWLEDGEMENTS

I am in debt to my advisorDr. Anthony Skjellum for providing me valuable

guidanceand assistancethroughout my Master's program. His understandingand

encouragementwereindispensablefor the completionof this thesis. I amalsogratefulto

Dr. BradleyCarterandDr. RaghuMachirajufor their valuablesuggestionsandfeedback.

I would like to acknowledgethattheDefenseAdvancedResearchProjectAgency

(DARPA) providedpartial funding throughthe United Air ForceResearchLaboratory,

Rome,New York, undercontractsF30602-95-1-0036("MPI/RT andPacketWay"study)

and F30602-96-1-0329("Ubiquitous Realtime NOWs" study) for conducting this

research.I also acknowledgeNational Aeronauticsand SpaceAdministration(NASA)

for providing additionalfundingundercontractNAG2-1211for conductingthis research

("Two-levelMiddleware"study).

I amthankful to my colleaguesin the High PerformanceComputingLaboratory

(HPCL). The author is especiallygrateful to ShaneHerbert and Jin Li for valuable

discussionsandsuggestions.I amalsogratefulto GerhardLehnererfor helping meset

up thetestbedfor theexperiments.

Finally, I expressspecialappreciationto my wife, ShanshanLin, andmy parents

for their persistentsupport. Without their supportand encouragement,it would have

beenimpossibleto finish this thesis.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS ... iii

LIST OF TABLES .. v

LIST OF FIGURES ... vii

CHAPTER

I. INTRODUCTION ... 1

II. LITERATURE REVIEW .. 6

Key Terms Related to This Work .. 6

Real-Time Communication in Packet-Switching Networks 7

Quality of Service Models ... 10
Traffic Characterization Models .. I I

Packet-Scheduling Algorithms .. 13

Admission-Control Protocols for Quality of Service Communication 18

Communication Middleware ... 21

Summary .. 22

III. QUALITY OF SERVICE ON SUB-NETWORKS .. 24

Link-layer Protocols for Supporting Quality of Service 24

The IEEE 802. lp Protocol ... 25

Quality of Service in ATM .. 26

Experiments on IEEE 802. Ip .. 28

Experimental Testbed .. 28

Purpose and Procedures .. 29

Analysis of Results and Significance ... 33

Resource Reservation Protocol .. 34

o°°

I11

CHAPTER

Experiments on RSVP .. 35

Experimental Purpose and Procedures ... 35

Analysis of Results and Significance ... 36

IV. THE DESIGN AND IMPLEMENTATION OF COMMUNICATION

MIDDLEWARE WITH QUALITY OF SERVICE GUARANTEES 40

Application Programming Interface Design ... 40

Implementation Description .. 42

V. MEASUREMENT AND ANALYSIS OF QUALITY OF SERVICE 48

Design of Experiments .. 48

Analysis of Experiment Results .. 51

Summary &Experiments .. 60

VI. CONCLUSION .. 63

Summary of Research Results ... 63
Lessons Learned ... 64

Future Work ... 65

REFERENCES .. 67

APPENDIX ... 70

A EXPERIMENTAL MEASUREMENTS ... 70

iv

LIST OF TABLES

TABLE

2.1

3.1

3.2

4.1

5.1

5.2

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.10

Page

Feature Comparison Between RSVP and the Tenet Protocol Suite 21

Traffic and QoS Parameters in ATM Service Categories 27

Experimental Descriptions for IEEE 802.1 p ... 30

Communication Interface Functions ... 41

Communication Layer Measurement Experiments ... 49

Summary of Experimental Results ... 62

Data for Figure 3.4, End-to-End Packet Delay ... 70

Data for Figure 3.5, End-to-End Packet Delay ... 71

Data for Figure 3.6., Packet Receiving Delay in Single RSVP flow 72

Data for Figure 3.7, Packet Receiving Delay in Multiple RSVP flows 72

Data for Figure 5.2, Packet Receiving Delay Jitter .. 74

Data for Figure 5.4, Receiving Delay Jitter ... 75

Data for Figure 5.6, Packet Transfer Delay .. 76

Data for Figure 5.7, Packet Transfer Delay .. 77

Data for Figure 5.8, Packet Transfer Delay .. 78

Data for Figure 5.9, End-to-End Packet Receiving Delay 79

V

TABLE Page

A.I 1 Data for Figure 5.10, End-to-End Packet Receiving Delay 80

vi

LIST OFFIGURES

FIGURE

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

5.1

5.2

Page

End-to-End Packet Transfer Delay Distribution ... 8

Basic Scheduling Problem ... 14

RSVP Integration in Host and Router ... 18

Software Architecture of the Tenet Protocol Suite .. 20

Sub-Network Configuration for IEEE 802. I p Experiment 29

End-to-End Packet Delay on Connection 1, Test 1 ... 31

End-to-End Packet Delay on Connection 2, Test 1 ... 31

End-to-End Packet Delay on Connection 1, Test 2 ... 32

End-to-End Packet Delay for Connection 2, Test 2 .. 32

Packet Receiving Delay in Single RSVP flow .. 37

Packet Receiving Delay in Multiple RSVP flows ... 38

Communication Middleware Architecture .. 42

Flow Chart For Channel Creation ... 44

QOS Structure ... 47

Experimental Testbed .. 51

Receiving Delay Jitter with Interruption From Packet Generator, Test 1 52

vii

FIGURE

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

Page

ReceivingDelayJitterWithout Interruptions,Test1..53

ReceivingDelayJitterWith InterruptionFromPacketGenerator,Test255

ReceivingDelayJitterWithout InterruptionFromPacketGenerator,Test2......55

PacketTransferDelayonChannel 1- BandwidthSharingTest 1.....................57

PacketTransfer Delay on Channel 2 - Bandwidth Sharing Test 1 57

Packet Transfer Delay on Two Channels - Bandwidth Sharing Test 2 58

End-to-End Packet Receiving Delay on Channel 1 - One to Many Case 59

End-to-End Packet Receiving Delay on Channel 2 - One to Many Case 59

°°°

VIII

CHAPTER I

INTRODUCTION

With the development of high-speed networking technology, computer networks,

including local-area networks (LANs), wide-area networks (WANs) and the Internet,

are extending their traditional roles of carrying computer data. They are being used for

Internet telephony, multimedia applications such as conferencing and video on demand,

distributed simulations, and other real-time applications. LANs are even used for

distributed real-time process control and computing as a cost-effective approach.

Differing from traditional data transfer, these new classes of high-speed network

applications (video, audio, real-time process control, and others) are delay sensitive.

The usefulness of data depends not only on the correctness of received data, but also the

time that data are received. In other words, these new classes of applications require

networks to provide guaranteed services or quality of service (QoS). Quality of service

can be defined by a set of parameters and reflects a user's expectation about the

underlying network's behavior. Traditionally, distinct services are provided by different

kinds of networks. Voice services are provided by telephone networks, video services

are provided by cable networks, and data transfer services are provided by computer

networks. A single network providing different services is called an integrated-services

network.

Providingintegratedservicesoverpacket-switchingnetworksis attractivefor two

key reasons. First, the infrastructure is often already in place and network bandwidth is

increasing rapidly. Packet-switching networks represent the latest network technology.

High bandwidth makes feasible that switching networks provide such integrated

services, since QoS-oriented communications usually need a lot of peak bandwidth for

handling bursty traffic. Second, an integrated service network seems more economical

and easier to manage than separate datagram networks and real-time networks, working

in parallel.

Unlike circuit-switching networks (such as telephone networks), computer

networks are essentially datagram-based networks. They are designed to provide best-

effort service, which is sufficient for the data transfer service they provide. In datagram

networks, each packet is routed independently across shared networks and is possibly

reassembled with other datagrams at the receiving side to construct a complete message

so as to achieve the maximum usage of network resources. There is no dependable way

to know in advance how much time it will take for a packet to be transferred from the

sending endpoint to the receiving endpoint: The transfer times vary significantly

because of the dynamically changing network loads. In other words, delay bounds are

broad. Consequently, providing QoS in a LAN or WAN emerges as a new challenge.

There are many approaches proposed in the literature to meet this QoS challenge.

Those approaches can be divided into two categories. One class of methods includes

modification of the current link-layer protocol (such as Ethernet or token ring protocols)

in order to make it appropriate for real-time applications. These methods are usually

2

restrictedto a single LAN, or even a network segment. The IEEES02.1p protocol is

such a protocol, designed to provide bandwidth reservation in an Ethernet network. As

another example, Asynchronous Transfer Mode (ATM) is a link-layer protocol that is

designed to provide connection-based quality of service. Another class of methods

works with WANs (including the Internet) in order to provide QoS, despite the

underlying complexity and heterogeneity of the constituents of the network. This class

of methods supposes that the underlying sub-networks provide delay-bound guarantees.

However, in the Internet environment, parts are often heavily loaded, which results in

congestion, with consequent indefinite packet delay. Several protocols are proposed for

time-sensitive applications over the Internet such as resource ReSerVation (RSVP)

protocol (Braden et al. 1997). But, numerous problems still need to be resolved before

RSVP can be deployed in an open environment. Specifically, policy control is an

ongoing research topic in the RSVP forum.

In this thesis, our research focus is on how to provide quality of service in a closed

sub-network environment and to analyze various factors affecting end-to-end QOS. A

sub-network is a homogeneous part ofa LAN (or possibly a whole LAN) that connects a

cluster of workstations through switches. This kind of switching network is typically

used for real-time process control and real-time distributed computing (Mizunuma, Shen

and Takegaki 1996). A closed sub-network means that the users have complete control

over all network dements in this sub-network and that there is no traffic interference

from outside. Typical network elements include switches, hosts, and physical links.

Because the network resources are shared by all applications running on hosts connected

to networks,any real-time application that tries to use network resources and is not

controlled by the system communication middleware would interfere with other real-

time applications. Hence, such applications would break QoS guarantees that were

granted to those pre-existing, properly admitted applications. Consequently, in a

switching sub-network, not only the link layer is required to provide bound packet

transfer delay, but also a resource reservation mechanism is necessary to assure

compliance.

Given these issues, the research hypothesis for this work is that sub-network-wide

bandwidth reservation and guaranteed host CPU processing power for handling data

traffic are both indispensable to achieving hard end-to-end quality of service. The link

layer must first provide bounded delay, otherwise no bounded end-to-end delay is

possible for message transfer. Different bandwidth reservation strategies, traffic

characterization schemes, and scheduling algorithms can affect the network resources

and CPU usage as well as the extent that QoS can be achieved, and are also needed.

Our research strategy is empirical. We first offer an analysis on the IEEE 802.1p

protocol to test our hypothesis. The IEEE 802.1p protocol is a typical link-layer

bandwidth reservation protocol. Then we offer an analysis on RSVP to test the research

hypothesis. Finally we create our own experimental communication layer middleware

to investigate QoS in high-speed packet-switching sub-networks and to test the research

hypothesis further. In this middleware, we introduce a sub-network-wide and topology-

based resource reservation mechanism. We show that this resource reservation

mechanism is more efficient compared to RSVP. We execute test cases on high-

4

performanceSun Solarisworkstationsthat are connectedtogether using gigabit-per-

secondEthernet switches. Theseswitchesprovide recentQoS-orientedextensionsto

Ethernet.

The remainderof this thesis is organizedas follows. Chapter II reviews the

relevant literature in real-time communicationover packet-switchingnetworks and

discussesvarious mechanismsand approachesneededto efficiently use a datagram

network for real-timecommunication.Chapter III presentslink-layer protocols and

resourcereservationprotocolsfor qualityof serviceandoffersanexperimentalanalysis

ontheIEEE 802.lp protocolandon theRSVPprotocol,respectively.In ChapterIV, we

presentthe designand implementationof our experimentalcommunicationlayer, and

then, in ChapterV, we offer an analysisbasedon testing results. In ChapterVI, we

concludetheresearchandpresentlessonslearnedandpossiblefuturework.

5

CHAPTERII

LITERATUREREVIEW

The purposeof this chapteris to review the relevantliterature in the researchof

quality of servicecommunicationin packet-switchingnetworks.Various protocolsand

algorithmsdesignedfor providingqualityof servicecommunicationarereviewed.

Key Terms Related to This Work

We define the following key terms to simplify the exposition that follows. These

terms are frequently referred to throughout this thesis.

Sub-network: A sub-network is a homogeneous part of a LAN (or possibly a whole

LAN) that connects a cluster of workstations through switches. A closed sub-network

means that the users have complete control over all network elements in this sub-

network and there is no traffic interference from outside network elements or systems.

Quality of Service (QoS): QoS is a description of the expected or required service

of a network by a certain application.

delay, maximum end-to-end packet

Bandwidth, maximum end-to-end packet transfer

transfer delay jitter, and packet loss rate are

important parameters used to measure or quantify QoS (Banerjea et al. 1996). "Hard

QoS" means absolute guarantees from the underlying network. "Soft QoS" means

statistical guarantees from the underlying networks.

Admission Control: Admission control is a mechanismto test whether the

underlying networks can accommodatethe requestedQoS. An admissiontest is

equivalentto admissioncontrol.

Jitter: Jitter is the varianceof end-to-endpackettransfer delay. Smoothjitter

meansthat thevarianceof packettransferdelayis small. Non-smoothjitter meansthat

theend-to-endpackettransferdelaychangedramatically.

Reliable service:Reliableserviceis a kind of servicein which networks deliver

datapacketswithout errorandwith boundeddelay. If a packetis lost for somereason,

theprotocolwill retransmitthe packetuntil it is receivedby the receiveendpoint,with

fault notificationatter manyretries.

Best-effort service: Best-effort servicemeansthat the network promisesnot to

delayor discardpacketsintentionallyanddoesits best to forward packetsto the next

hop or destination. However,packetsmay be droppedfor reasonsof congestionor

error.

Real-Time Communication in Packet-Switching Networks

Much research has been done during the past decade toward achieving real-time

communication in packet-switching networks. Traditionally, datagram networks only

provide best-effort services in which there are no guarantees as to whether a packet will

be delivered reliably to the destination and when it will arrive at the destination.

Reliable data transfer is achieved by transport-layer protocol such as TCP. Many

studies show that without link-layer real-time protocol support, it is difficult to provide

hard end-to-end quality of service (QoS) in a packet-switching network. This is so

7

becausethe link layer may add indefiniteend-to-endpackettransferdelay,or because

the delay variance of two consecutive packets may be larger than the expected value

(Kurose 1993). Hard end-to-end QoS means that underlying networks provide absolute

guarantees on requested QoS. Correspondingly, sott QoS means statistical service

guarantees from networks.

Higher layer protocols and resources management are necessary to provide QoS in

wide-area networks (Clark, Shenker, and Zhang 1992). Some link-layer protocols for

real-time communication were proposed, such as sub-network bandwidth reservation

protocol on Ethernet, real-time Media Access Control protocols, ATM, and others.

Various factors can cause end-to-end packet-transfer delay. Figure 2.1 shows possible

delay that a packet may experience from the sending endpoint to the receiving endpoint.

Sender

OS

NIC

Network

NIC

OS

Receivei

........ _D_o_s-_se_n_d...........................

............._ _p_ni_'_c-_s_e_n_d_....................

.................... _D_n_et_w__or_k_............

........................ _..=.__D__ni_c-_r_e_v_..........

............................... _....__ _Dg_s-..r_e_cv___

...................................... _...._ _Dr_e_c2,,_

time

Figure 2.1. End-to-End Packet Transfer Delay Distribution

When the sender generatespackets in real time and passes them to the operating

system, a packet may experience indefinite delay inside the operating system because of

8

processor threadscheduling. When the packetarrivesat the network interfacecard

(NIC), dependingon the underlyingnetwork, it may also experienceindefinite delay.

However, in a switchingnetworkthe delaycausedby the NIC is bounded,but traffic

from different sourcesmay conflict inside switches,which forces the upper layer

protocol to retransmitdata,againresultingindefinite delay. Thoughin most situations,

thoseindefinite delaysarestill bounded,the delayboundis too looseto be usefulfor

real-timeapplications.

From the abovediscussion,we canseethat a fundamentalproblemfor real-time

communicationin a packet-switchingnetworkis to enforcea real-timeservicemodelon

all networkelementsandhosts. Suchareal-timeservicemodelcanbe achievedthough

reservingresourcesandschedulingpackets.

Thereare two basicgoals in providing QoS in packet-switchingnetworks. One

goal is to effectivelyuseunderlyingresources,which includenetworkbandwidth,CPU

processingpower,buffer space,etc. Anothergoal is that a newly admittedconnection

shouldnot affect alreadyestablishedconnections.The difficulty is that the datagram

networksin essencearepacket-basedandnot connection-based.From a user'spoint of

view, those connectionsshould be independentof each other. So, any complete

approachintendedto provideQoSin packet-switchingnetworksneedsto dealwith the

following three issues(Ferrari and Verma 1989): 1) QoS and traffic specification

models; 2) the admissioncontrol and resourcereservationmodels; and 3) packet

schedulingstrategiesor service disciplines. During the past decade,many packet

9

schedulingalgorithms, and traffic models have been

sections,we reviewtheseissues.

proposed. In the following

Qualityof ServiceModels

Quality of service (QoS) is a description of user-expected service on a network.

QoS parameters usually include bandwidth, maximum end-to-end packet transfer delay,

maximum end-to-end packet transfer delay jitter, and packet loss rate (Banerjea et al.

1996). The variations of transit delay are called jitter. Jitter is used to measure the

delay variance between two consecutive packets. Delay and delay jitter are based on a

given packet size. Of the QoS parameters, the end-to-end packet transfer delay bound is

the most important for real-time communication since continuous media applications

and real-time control applications require bounded packet transfer delay. They also

require that packet transfer delay jitter should be bounded.

Packet loss may be caused by the physical link (data corruption), or because packets

are discarded intentionally by packet-scheduling algorithms in the cases of delay bound

violation, delay jitter violation, or resource exhaustion. Reliable, guaranteed services

provide both zero packet loss rate and bound end-to-end delay while statistical services

provide only statistical guarantees on delay and jitter and allow a non-zero loss rate

(Banerjea et al. 1996). Real-time process control and real-time distributed computing

require networks to provide reliable and guaranteed service. Multimedia applications

usually need only statistical services because people can tolerate data loss to some

degree without noticing it. One advantage of statistical services is that it can greatly

increase the network usage since it does not need to reserve resource in terms of peak

10

rate. Guaranteedservice must consider the worst-case delay that a packet may

experience across the networks.

Both RSVP and the Tenet protocol suite provides statistical and guaranteed services

(Braden, Zhang, Berson, Herzog, and Jamin. 1997; Ferrari and Verma 1989). The real-

time Message Passing Interface (MPI/RT) (MPI/RT Forum 1998) strives to provide a

standard API for message passing with QoS in a distributed computing environment.

For MPURT, message passing is reliable and deterministic. MPI/RT also provides best-

effort service as a default option.

Traffic Characterization Models

Traffic characterization is represented by a set of parameters that specify the data

generation characteristics for a source. The characterization is specified in terms of

bounds on data volumes. Based on traffic characterization and QoS requirements,

admission control can reserve resources to provide the required QoS. Traffic parameters

can be viewed as QoS parameters since they define the lower bounds on instantaneous

and average throughput that the network is being requested to provide (Banerjea et ai.

1996). There are many other traffic specification models proposed in the literature as

well. Several of these models are discussed here.

[Xmin, Smax] (Golestani 1990) is a simple model intended for smooth traffic

sources. A smooth traffic source means that the variance of inter-arrival time is zero or

small. A connection satisfies this model if the minimum inter-arrival time between two

consecutive packets is always equal to or longer than Xmin, and largest packet size is

Smax. The peak rate is equal to Smax/Xmin. Using this model will result in over-

11

reservedresourcesfor statisticalservicesincestatisticalservicedoesnot needto reserve

resource in terms of its peak rate.

[Xmin, Xave, I, Smax] was proposed by Zhang and Ferrari (1993) and was used

in the Tenet real-time protocol suite (Banerjea et al. 1996). It is suitable for describing

non-smooth traffic. Non-smooth traffic means that inter-arrival time between two

consecutive packets changes dramatically. The limitation of this model is that it is hard

to obtain those parameters except for some well-known sources (such as MPEG

streams). This model states that average inter-arrival time of two consecutive packets

during any interval of length I must be larger or equal to Xave. The average packet

arrival rate is Smax/Xave. For statistical service, the system need only reserve resources

in terms of average rate; therefore, the usage of network resources increases. The [or, p]

model proposed by Cruz (1991) has similar capabilities, but does not specify minimum

inter-arrival time, so it is only for statistical service. The cr and p parameters are the

maximum burst size and the long-term average rate of the source traffic, respectively.

During any interval of length t, the number of bits generated by the connection in an

interval is less than cr +,o *t.

The Leaky-bucket model is a traffic-conformance model (Turner 1986). It uses

a peak rate p and an average rate r to describe traffic, and a third parameter b, token

buffer size (or the bucket depth), in order to conform the traffic. Tokens are generated

at a fixed rate as long as the token buffer is not full. When a packet arrives from the

source, it is released into the network only if there is at least one token in the token

buffer, otherwise it will be discarded. This model enforces token arrival rate on the

12

input stream.Tokengenerationrateshouldbegreaterthanthe packetarrival rater and

lessthanpeakratep for stabilityreasons.In termsof this model,duringany interval of

lengtht, the numberof bits generatedwill be lessthan b +p*t. The RSVP protocol

uses this model as its traffic description model (Braden et al. 1997).

Some more complex traffic models have also been proposed for characterizing

the traffic more accurately such as the Deterministic Bounding Interval-Dependent (D-

BIND) model (Wrege et al. 1996), which uses multiple bounding average rates, each

over a different interval. Its precise characterization of traffic would improve resource

usage, but it is hard to use in practice since multiple bounding average rates must be

obtained in advance through experimentation.

or a host.

transmission.

simplest queuing algorithm is First Come First

algorithm cannot classify and prioritize traffic

Packet-Scheduling Algorithms

Packet-scheduling algorithms are also called the queuing mechanisms at a switch

The purpose of such algorithms is to schedule incoming packets for

Figure 2.2 shows basic scheduling problem (Aras et al. 1994). The

Served (FCFS). Obviously this

and is not suitable for real-time

communication in packet-switching networks. It can provide only best-effort service.

Some widely recognized packet scheduling algorithms are the Weighted Fair Queuing

(WFQ) (Parekh 1992), Early Deadline First (EDF) (Ferrari and Verma 1989) and Class-

Based Queuing (CBQ) (Floyd and Jacobson 1995) algorithms.

13

Queue-1

Link
Queue-2 _.k_._ Schedule_

Queue-3 ' _

Figure2.2. BasicSchedulingProblem

There are some basic requirementsfor any schedulingalgorithm. These

requirementsinclude separationof connections,efficient resourceutilization, fairness

among connections,simplicity, and scalability (Hyman, Lazar and Pacifici 1991).

Separation of connections means that a misbehaving connection should not affect the

well-behaving connections. A connection is misbehaving if it sends data at a rate

greater than its negotiated rate. Efficient resource utilization requires that the scheduler

be able to allocate resources in terms of QoS requirement and not waste resources. The

greater the utilization, the larger the number of connections that can be admitted under

the same conditions. Fairness means that if a connection uses less than its negotiated

rate, the unused quantity should be evenly divided among the other connections in some

way that does not favor any connection over another. Simplicity requires that the

scheduler should not consume too much CPU resources. Otherwise the scheduler itself

will introduce delay overhead to packet transfer. Simplicity reduces the residence time

of a packet at switches and hosts. Scalability means that the scheduler should be able to

scale well to cases with large numbers of connections since a physical link may have

thousands of logical connections to serve at a network node.

14

In a real-time distributed computing environment, isolation, simplicity, and

scalability are especially important. As for network utilization, there is a tradeoff in

complexity and utilization. Utilization represents the actual resources that can be used

by the user's applications. The simplicity of a scheduling algorithm can increase the

robustness of a system perhaps at the cost of low resource utilization. For hard real-time

distributed application, robustness has the most importance.

Weighted Fair Queuing (WFQ) is a packet-by-packet transmission scheme which

closely approximates Fluid-Flow Fair Queuing (FFQ). FFQ is a hypothetical, perfect

scheduling algorithm in the sense that a packet is infinitely divisible. The

implementation of WFQ is based on following equation (Demers, Keshav and Shenker

1989):

• S_
F; = max(F_'-',v(._))+ _-7

where F_ isthe virtualcompletion time for ith packet on connection k.

(2.1)

i ,

The a k s

denote the arrival time of the ith packet on connection k, Sk is the ith packet size on

connection k, _k is the bandwidth assigned to the connection k. The parameter [] E3is

the virtual time function, which is always increasing. Whenever the scheduler is ready

to transmit its next packet, it picks up the packet with minimum F value among all

packets backlogged for service. The WFQ algorithm uses the maximum burst size and a

long-term average rate as source traffic parameters. So, evidently, the leaky bucket

model can be used for the WFQ implementation. The WFQ algorithm gives an end-to-

15

end delay bound if the traffic conforms the negotiated rate. Otherwise the WFQ

algorithm cannot provide any guarantee on delay and delay jitter.

The delay-based Early Deadline First (EDF) was proposed by Ferrari and Verma

(1989) and is based on the traffic description [Xmin, Xave, I, Smax]. Differing from the

WFQ algorithm that requires maintaining a queue for each real-time connection, the

EDF algorithm need only maintain three queues. The first queue contains traffic that

requires deterministic guarantees on delay. The second contains traffic that requires

statistical guarantees. The third contains other traffic without any real-time

requirements. When the scheduler needs to send a packet, it compares the ending time

of the packet in the statistical queue with the beginning time (i.e., the deadline minus the

service time) of the packet in the deterministic queue. If the latter is lower than the

former, the next packet is taken from the deterministic queue. Otherwise, the same

comparison is made between the no-guarantee queue and the statistical queue, and a

decision is made between the two. The EDF algorithm can provide guarantees for

bandwidth and end-to-end delay bounds as well as statistical guarantees in which loss-

rate resulting from missed deadlines or buffer overflow can be bounded

probabilistically. The buffer space needed at each node is also bounded. Admission

1
will reserve a bandwidth of ,-TT--to each channel k at every node n along its path.

Xmi,

However, EDF's admission method is complex.

The admission control performs two tests at each node: a node saturation test and a

scheduler saturation test. The node saturation test tests whether the node has sufficient

16

processingor transmission capacity. The purpose of the scheduler saturation test is to

look for the minimum local delay bound for a new channel that does not saturate the

scheduler, even in the worst case (Cilingiroglu, Lee and Agrawala 1997). A new

channel is accepted if node saturation test succeeds at each node and the sum of local

delay bounds is less than or equal to the end-to-end delay bound. EDF is based on the

observation that an arriving packet does not need to be sent out immediately as long as it

can satisfies the local delay bound.

The class-based queuing (CBQ) algorithm is a more recent technology. It classifies

packets in the same way as simple, priority-based algorithms and puts packets into

different queues. However, the scheduler serves the queues in a round-robin order. The

number of packets that can be removed from a queue on each pass is configured during

the admission test in terms of the required QoS. This feature ensures that no class

achieves more than a given proportion. Coupled with a timer, the CBQ algorithm can

be used to ensure that each class will obtain a certain percentage of bandwidth under any

circumstance. Inside each class, CBQ still uses First Come First Serve (FCFS). But,

between classes, the CBQ algorithm enforces a certain-degree of fairness. Because of

the simplicity and effectiveness of the CBQ algorithm, we use this algorithm for our

communication layer implementation.

Many other complex queuing algorithms are also proposed, such as rate control

static priority (RCSP) (Zhang and Ferrari 1993), jitter-based Early Deadline First

(Ferrari 1992) and the virtual clock algorithm. The virtual clock algorithm gives exactly

17

the sameresultsasWFQ, but it wasderivedfrom Time Division Multiplexing (TDM)

(Zhang1991).

Admission-Control Protocols for Quality of Service Communication

An admission-control protocol is used for establishing a point-to-point connection

or multicast connection. Its purpose is to test whether each network element along the

path can meet the requested QoS. Several complete protocols have been proposed for

admission control. Each is intended to provide a complete method for real-time

communication in a wide-area network. The resource ReSerVation Protocol (RSVP)

was first proposed by Lixia Zhang and now is an IETF proposed standard (Braden et al.

1997). The RSVP provides two services: load-controlled service and guaranteed

service. In Chapter II, we undertake a careful analysis of RSVP performance. Figure

2.3 shows its implementation architecture following (Braden et al. 1997).

Applicatio] [PolicyControl

or RECV_,

'[RSVP Process

I

!

V

Data .-t Admission• • • Control

llr L,- V

Packet _ PacketClassifier Scheduler

Host

RSVP

$
I RoutingProcess

Process]

/'.:.,
; :',

'1
:q

I

/ ,"l
I

! ,

Packet

Classifier

Policy
Control

Admission
Control

Packet

Scheduler

Router

Figure 2.3. RSVP Integration in Host and Router

18

The RSVP processis implemented as a daemon process at the user-level. An

application requests a certain quality of service from the RSVP daemon running on the

host in terms of the sender side's traffic specification. The RSVP daemon then checks

with an admission-control module to find out whether the node has sufficient resources

to supply the requested QOS.

set in the

reservation.

If this node can afford the requested QOS, parameters are

packet classifier module and packet scheduler module to enforce the

The RSVP daemon then sends the reservation request to the next node on

the data path. This process continues to the destination node. If the admission test fails

at any stage, the RSVP daemon sends an error notification back to the host. Once the

reservation is accepted by every node on the data path, the RSVP flow is set up and will

receive the requested quality of service. The packet classifier and packet scheduler

modules on every node are jointly responsible for the quality of service given to a flow.

The classifier looks at every data packet to determine whether the appropriate flow has a

reservation and which QOS the flow should get.

The Tenet protocol suite was proposed by Ferrari, Verma and others. RSVP is only

a signaling protocol and depends on other transport protocols to do data transfer while

the Tenet protocol suite provides its own internet layer protocol called RTIP (Real-Time

Internet Protocol) and two transport protocols called RMTP (Real-Time Message

Transfer Protocol) and CMTP (Continuous Media Transfer Protocol). The Tenet

protocol suite uses RCAP (Real-Time Channel Administration Protocol) as a resource

reservation protocol. Figure 2.4 shows its software architecture (Banerjea et al. 1996).

It coexists with the TCP/IP protocol and uses TCP for transferring control messages.

19

User Space

Kernel Space
RMTP

Application

RCAP

Socket Layer

CMTP
TCP UDP

RTIP IP

Device Drivers

Figure 2.4. Software Architecture of the Tenet Protocol Suite

The Tenet protocol suite is intended for continuous-media applications. It provides

deterministic, statistical service as well as best-effort service. Deterministic service is

similar to guaranteed service while statistical Service is similar to load-controlled service

in RSVP. However, transport protocols RMTP and CMTP do not provide reliable data

transfer. Even the deterministic service does not imply reliable service. If a packet is

corrupted, the service model simply discards the packet since it is based on such an

assumption that any mechanism to retransfer the packet will result in a missed deadline.

Like RSVP, the Tenet protocol suite assumes that the link layer will provide bounded

packet delay. Table 2.1 shows a comparison between RSVP and the Tenet protocol

suite.

20

Table 2.1. Feature Comparison Between RSVP and the Tenet Protocol Suite

RSVP Tenet Protocol suite

Services Provided Load-Controlled and Deterministic and Statistical

Guaranteed services services

Traffic Specification Leaky Bucket model (r, b, p, (Xmin, Xave, I, Smax)

m, M)

QoS Specification (r, b, p, m, M, g, s) (Dmax, Zmin,Jmax, Wmin)

Transfer Protocol TCP/UDP RMTP/CMTP

Control Protocol

Reservation Initiator

RSVP RCAP

Receiver Sender

Reservation Sharing Support No support

Status IETF Proposed Standard Non-standard protocol

Communication Middleware

Middleware is considered to be an efficient software architecture for implementing

a real-time distributed communication layer (Mizunuma, Shen and Takegaki 1996). It

provides an application-programming interface and masks the

various underlying communication hardware. Communication

differences between

middleware usually

includes following features: a programming model, a real-time transport protocol on top

of native services, a QoS mapping algorithm, user-level multiplexing schemes, and local

and global admission mechanisms (Mizunuma, Shen and Takegaki 1996).

21

Middlewareitself is configurable and selectable. Both the RSVP protocol and the

Tenet protocol suite were implemented as middleware. On top of ATM, a real-time

distributed computing middleware called MidArt was also implemented (Mizunuma,

Shen and Takegaki 1996). Efficient middleware is usually tightly bound with the run-

time environment so as to achieve high performance and predictability. The

fundamental issue for middleware to provide sub-network-wide QoS is to have control

over all endpoint systems and network elements within this sub-network.

Communication middleware with QoS mainly consists ofa QoS mapper module, an

admission-control module, and a packet scheduler module. The QoS mapper

implements the mapping of user-level QoS and traffic parameters to network-specific

QoS and traffic parameters. The admission-control module determines whether the

currently available resources can accommodate a new request. It includes local and

global admission control. Local admission control determines whether a local endpoint

system has sufficient resources whereas global admission control checks whether all

endpoint systems and switches in a sub-network have sufficient resources. Global

admission control is realized through an admission-control protocol that defines a set of

control messages to be passed between control entities along the end-to-end path. The

packet scheduler is an implementation of service disciplines or queuing algorithms.

Summary

In this chapter, we reviewed the basic approaches for real-time communication in

packet-switching network. Those approaches are intended for real-time communication

in wide area networks, or the Internet. A common idea is to reserve resources, which

22

again is realized through packet scheduling algorithms. Required resources for a

connection are calculated based on the user's QoS request and traffic descriptions of

data sources. Admission-control mechanisms are employed to test whether the network

can provide the requested QoS. The problem for such approaches is that, in a wide area

network, it is hard to control network resources, which makes it difficult to achieve hard

end-to-end QoS. A client-server-based model is evidently not suitable for real-time

distributed computing either. Real-time distributed computing in a cluster requires hard

end-to-end QoS and point-to-point, peer connections. Elsewhere in this thesis, we

design and implement a real-time communication middleware to investigate how QoS

can be efficiently provided and which factors affect QoS.

23

CHAPTER III

QUALITY OF SERVICE ON SUB-NETWORKS

In this chapter, we investigate quality of service on sub-networks. As discussed

in Chapter II, the link-layer QoS support and sub,network-wide resource management

on top of the network layer are two necessary requirements in order to achieve QoS in a

closed sub-network.

Link-layer Protocols for Supporting Quality of Service

Real-time media access control (MAC) protocols for multi-access networks try to

achieve real-time communication in multi-access networks. In a multi-access network,

nodes communicate via a single shared physical link, and at any given time, only one

node is allowed to access this physical link to send packets to another node or nodes.

The dynamic reservation method is similar to Time Division Multiplexing (TDM). It

has been adopted for use with both the Carrier Sense Multiple Access / Collision Detect

(CSMA/CD) window protocol and a token-passing protocol (Malcolm and Zhao 1995).

However, it requires a global clock in order to coordinate the access to the shared

physical link, which makes the implementation of this method difficult to be exact

because of the scheduling algorithms and priority arbitration protocols employed. A

global clock has to be refreshed periodically. On the contrary, switching network

technology allows all nodes to send and recdve messages simultaneously at full link

24

speed. In a switching network, the packet-scheduling algorithm can be implemented

inside the switch without global clock synchronization and their implementations can be

exact. We investigate two link-layer protocols: ATM and IEEE 802. lp. Both protocols

are intended to provide quality of service.

The IEEE 802. lp Protocol

The IEEE 802. lp protocol is a simple priority-based Media Access Control (MAC)

protocol for switched Ethernet. It specifies both the setup of Virtual LAN (VLAN)

information and the nature of traffic that will travel over the VLANs to support time-

critical traffic for a switched LAN. The protocol achieves QoS through prioritization of

traffic classes (IETF 1999). The IEEE 802. lp protocol also provides efficient support of

multicasting. Usually packet delay inside a switch consists of queueing delay and

access delay. Priorities in the IEEE 802.1p include queueing priority and access

priority. It allows up to eight traffic classes, different priorities on different ports, and

dynamic multicast filtering. The IEEE 802.1p protocol also supports priority

designation to IEEE 802 MAC protocols. Combined with IEEE 802.1Q protocol (IEEE

1999), the IEEE 802. lp protocol facilitates QoS over Ethernet by providing a means for

tagging packets with an indication of the priority or class of service desired for the

packet. These tags allow applications to communicate the priority of packets to

internetworking devices. RSVP support can be partly achieved by mapping RSVP

sessions into the IEEE 802.1p service classes. One disadvantage of IEEE 802.1p

protocol is that it allows only off-line priority designation.

25

Qualityof Service in ATM

As opposed to switched Ethernet, Asynchronous Transfer Mode (ATlVl) is designed

to provide end-to-end QoS on a per-connection basis through traffic management. An

end-to-end connection can be established through cascading virtual channels. Traffic

management enables an ATM network to deliver individual connections, as well as

protect against conditions that could result in congestion and degraded performance.

ATM works to achieve these goals by the following techniques (Zheng, Shin and Shen,

1994): 1) support for multiple types of traffic at different speeds; 2) satisfaction of each

application's QoS requirements on a per-connection basis; 3) maximization of the

utilization of network resources; 4) protection of ATM end-users and the network in

order to achieve network performance objectives; 5) minimization of reliance on ATM

Adapter Layer (AAL) and higher-layer traffic management schemes in order to reduce

or eliminate congestion in an ATM network. In order to reach those goals, ATM will

perform an admission test before it accepts a connection with a certain requested QoS.

If a connection exceeds its negotiated traffic rate, the ATM network has the right to

discard or tag those cells and notify end users. ATM networks also provide fair and

equitable access for ATM end users wishing to use unused network resources on a best-

effort basis.

The ATM network defines a service architecture consisting of five ATM service

categories that relate traffic and QoS parameters to network behavior. These service

categories are as follows: 1) constant bit rate (CBR); 2) variable bit rate, real time

26

(VBR-rt); 3) variablebit rate,non-realtime (VBR-nrt); 4) available bit rate (ABR); and

5) unspecified bit rate (UBR). Real-time communication on ATM must be mapped to

Table 3.1. Traffic and QoS Parameters in ATM Service Categories

Attributes for Traffic

parameters and QoS

parameters

ATM Layer Service Categories

Peak Cell Rate (PCR)

Cell Delay Variance Tolerance

(CDVT)

Sustainable Cell Rate(SCR),

Maximum Burst size(MBS)
CDVT

CBR VBR-rt VBR-nrt UBR

Traffic Parameters

yes yesyes yes

yes yes

N/A N/A

N/A

ABR

yes

N/A N/A

Minimum Cell Rate(MCR) N/A N/A

QoS parameters

Max End-to-End Cell Delay yes yes no no

Variance(CDV)

Maximum Cell Transfer Delay yes yes no no

(CTD)

Cell Loss Rate (CLR) yes yes yes no

yes

no

no

no

service categories of CBR or VBR-rt. Each service category has its own QoS and

traffic specification. Table 3.1 shows these ATM services following (Shen 1996).

Each service category corresponds to an ATM adaptation layer. AALs sit on top of

the ATM layer. Their main purpose is to adapt the flow of information received from a

higher-layer application like voice or data to the ATM layer. Each AAL consists of two

27

sub-layers:the segmentationand reassemblysub-layerand the commonconvergence

sub-layer. Except for UBR, the otherfour servicecategoriesarebasedon connection-

orientedmodeof operation. AAL 1 and AAL 2 provide CBR and VBR-rt services,

respectively.AAL 3, 4 andAAL 5 support services of VBR-nrt andUBR. AAL0

supportsABR (McDysanandSpohn1995).

ThoughATM network architecturecanprovidethe end-to-end QoS guarantee for

CBR and VBR-rt, ATM is still in its infancy because it lacks standard distributed Cell-

Admission-Control (CAC) algorithms, and efficient cell scheduling algorithms.

Middleware that bridges applications and ATM services is needed (Shen 1996). One of

IETF efforts is on how to map QoS defined in RSVP on to ATM (Crawley, Berger,

Berson, Baker, Borden and Krawczyk 1998).

Experiments on IEEE 802. lp

Experimental Testbed

In this experiment, we use one Extreme brand gigabit switch to connect five

hosts, each host in our testbed is a Sun UItra-SPARC workstation running Solaris 2.6

operating system. The testbed is illustrated in Figure 3.1.

The link between host and switch supports full duplex 100 megabit per second

bandwidth. Multiple switches can be connected together through its gigabit-per-second

Ethernet port. So, essentially, arbitrary topologies are possible. The Extreme brand

gigabit switch implements the IEEE 802.1p protocol. However it does not support

dynamic and connection-based priorities. Four priority classes are supported in Extreme

28

gigabit switches:low, normal, medium, and high. Inside a switch, each port is actually

associated with a queue. The switch uses this priority to schedule packets. When traffic

conflict occurs, traffic from the high-priority queue gets passed first. Obviously, such a

simple strategy will completely starve low-priority traffic if the traffic from the high-

priority queue lasts for a sufficiently long time.

P1 P3

m

P2 P4

Figure 3.1. Sub-Network Configuration for IEEE 802.1 p Experiment

Purpose and Procedures

The purpose of this experiment is to test whether the link-layer protocol IEEE

802.1p provides priority-based QoS guarantees and to measure how well this protocol

works for time-sensitive traffic class, or to which degree QoS can be achieved using this

protocol.

In this experiment, nodes HI and H2 send traffic to the third node H3 at wire speed

(see Figure 3.1). Since each link speed is 100 megabit per second, eventually, traffic

conflict will occur at port 3. We undertook two tests. In test 1, we assigned the same

priority to port 1 and port 2. In test 2, we assigned high priority to port 1 and low

29

priority to port 2. Table 3.2 lists what each experiment tests and their respective

descriptions.

The results of test 1 are presented in Figure 3.2 and Figure 3.3. Results of test 2 are

presented in Figure 3.4 and Figure 3.5. Figure 3.2 shows the end-to-end delay for TCP

connection 1 (from H1 to I-I2) and Figure 3.3 shows the end-to-end delay for TCP

connection 2 (from H2 to H3). The switch monitor showed that there was no packet

corruption during the life time of these two connections.

Table 3.2. Experimental Descriptions for IEEE 802. lp

Tests Purpose Experimental Descriptions

Test-1

Test-2

To test whether

the IEEE

802. lp protocol

provides fair
service to

connections

with same

priority
To test whether

the IEEE

802. lp protocol

provides

expected

priority service.

Create multiple connections from different sources to

the same destination. Specify all connections same

priority. Each source sends packets at wire speed. So

conflict will eventually occur at the output port of the
switch connected to the destination node. Packet

delay on each connection is recorded. Figure 3.2 and

Figure 3.3 show the case in which two connections

are set up.

Similar to Testl, but assign each connection with

different priorities. The output port of the switch is

supposed to serve each connection in terms of its

source port's priority. Packet delay will be recorded.

Figure 3.4 and Figure 3.5 show the case in which two

connections are set up.

30

=_' 700

600

5O0

400

300

200

100

0

,,,,,,,,,, Ii

Figure 3.2. End-to-End Packet Delay on Connection 1, Test 1

.500

400

I- 300

200

100

0

I, l

ll,I
IIII Iii I I I J

lilil, ,lllililillit
,il,Jl,ll,ll,ll,_l,,a,,,,ll_li_lilMH,_,il,ll,Jl,d,d

IIIllll

IIIIIil
iI,il,ll,_,il,ll,il

Packet Sequence

Figure 3.3. End-to-End Packet Delay on Connection 2, Test 1

31

.,.. 500

450

E_" 400

i=: 350

300

250

200

150

100

50

11

Figure 3.4. End-to-End Packet Delay on Connection 1, Test 2

.-,2500000

:l

_'2oooooo
ii::

150OOOO

1000000

500000

I

AA,
1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248

Packet sequence

Figure 3.5. End-to-End Packet Delay for Connection 2, Test 2

32

Analysis of Results and Significance

From test 1, we find that the average end-to-end delays for a 1K packet on

connection 1 and connection 2 are 171.25 (I.tsec) and 170.38 (lasec), respectively. Their

respective bandwidths are 46 megabit per secondand 47 megabit per second. Since the

physical link's raw bandwidth is close to 100 megabit per second, the switch provides

two connections that are almost perfectly sharing the bandwidth. Different packet sizes

affect only end-to-end packet delay; bandwidth is still perfectly shared. The maximum

end-to-end delay variance is nearly 600 l.tsec. The delay variance is mainly caused by

protocol processing and context switching inside the operating system. From test 2, we

can see that connection 1, which is from the high-priority port 1, gets almost the entire

bandwidth of the link. Connection 2, which is from the low-priority port 2, get serviced

only when there is no traffic from the high-priority connection, which results in huge

delay fluctuations on connection 2. This experimental result means that the switch

blocks the packets from the low-priority port when conflict transpires.

From these two simple experiments, we can conclude that the IEEE 8021.p

protocol provides reasonable bandwidth sharing among connections with the same

priority. However, end-to-end packet transfer delay is not guaranteed for a packet from

the low-priority port. Because the operating system cannot give the packet receiver and

sender guaranteed CPU time, extra delay jitter can be observed during the life of each

connection. Even for the high-priority connection, its end-to-end delay is not smooth

(see Figure 3.5), which proves part of our research hypothesis. That is, guaranteed CPU

33

processingpower at endpoint systemsfor handlingdata traffic is indispensable to

achieving hard end-to-end quality of service. Or, in other words, local admission

control at the hosts (endpoints) becomes necessary. The low-priority connection is

starved because traffic conflict inside the switch occurs and the switch provides only

simple, priority-based service. There are two approaches to avoid traffic conflict. One

approach is to use a global admission-control mechanism in order to guarantee that no

traffic conflict will occur. The other method is that the switch itself provides an

admission mechanism or participates with endpoints in the admission process.

Resource Reservation Protocol

The Resource ReSerVation Protocol (RSVP) was jointly proposed by the

Information Sciences Institute of the University of Southern California (USC ISI) and

Xerox Corporation's Palo Alto Research Center (PARC). Now RSVP is a proposed

standard of the Internet Engineering Task Force (IETF) (Braden et al. 1997).

RSVP is intended to provide QoS in wide-area networks or the Internet. The

targeted applications are video and audio applications that last a long time. It is not

suitable for short-lived connection applications such as ftp, web access, telnet, and so

on, since the overhead of setting up an RSVP flow cannot be fully justified for such

scenarios. RSVP is proposed as a supplement to the current TCP/1P-based network

model. A TCP/IP-based network provides only best-effort service in which the network

promises not to delay or discard packets intentionally and does its best to forward

packets to the next hop or destination. RSVP itself is just a signaling protocol. It sets

up a reservation at each node along the path, but enforcement of the reservation must be

34

done by the packet scheduler and classifier at each node. It is the enforcement of the

reservation that brings QoS to user applications. It is a fallacy that RSVP itself will

provide QoS. RSVP can reserve resources on a unicast connection or multicast tree. It

depends on other transport protocols (typically TCP or UDP) to transfer the actual data.

An RSVP flow can request load-controlled service or guaranteed service. A

flow is an end-to-end connection and is equivalent to the channel concept in the Tenet

scheme. Load-controlled service provides a statistical guarantee and is essentially

priority-based service. The end-to-end performance depends on the total traffic inside

this traffic class and the available bandwidth. Guaranteed service attempts to provide

hard end-to-end QoS. RSVP contains a policy control mechanism that determines

which entities can make a reservation. Authentication, access control and accounting

are ongoing research topics (Braden et al. 1997).

Experiments on RSVP

Experimental Purpose and Procedures

The purpose of measuring RSVP is to show how well load-controlled service

provided by RSVP performs in a closed sub-network, and also to show that RSVP itself

cannot provide an end-to-end delay bound if the underlying link-layer protocol does not

provide bounded delay. The experimental results can partially prove our hypothesis and

conforms to our theoretical analysis. We perform our tests on an RSVP implementation

that supports load-controlled service.

35

Theexperimentis basedon sametestbedusedin testingthe IEEE 802.lp protocol.

TheRSVPmidd|ewareis installedon eachhostof thesub-network. In the first test,we

createa singleRSVP flow with specifiedQoSusingTCP asa transport-layerprotocol,

andmeasureits end-to-endpacketdelay. Thenwe compareits end-to-enddelaywith a

simpleTCPconnectionto showwhethertheRSVPintroducesextraoverheadby its soit

staterefreshmentmechanismandpacketschedulerandpacketclassifier. In the second

test, we createmultiple competitive RSVP flows, and observe whether RSVP can

provide load-controlled service.

Analysis of'Results and Significance

Figure 3.6 represents the end-to-end packet receiving delay of an RSVP flow using

its load-controlled service. The receiver requests 100 megabit per second average rate

and peak rate is same as average rate. The bucket size is also 100 megabit per second.

Packet size is 1K bytes. Within a long period, we sample 256 consecutive packets. We

find that the average receiving delay per packet is close to the ideal value of 100 psec.

The receiving delay for the most of packets is approximately 100 psec. As for receiving

delay jitter, we think that there are two causes: l) kernel buffering for TCP/IP protocol

processing and 2) context switching. The first is due to the fact that we use RSVP flow.

The TCP connection does not differentiate the data boundary.

When we compare Figure 3.6 with Figure 3.5, in which a simple TCP connection

with full bandwidth is created and is assigned with highest priority, we see that the

36

causesthat result in delayjitter arethe same. Thedifferenceis that RSVP provides an

RSVP flow user-specified rate. The Figure 3.6 perfectly reflects this point.

i
AI AIAII

Figure 3.6. Packet Receiving Delay in Single RSVP flow

Figure 3.7 represents end-to-end receiving delay of an RSVP flow with both

average rate and peak rate equal to 72 megabit per second. However at the sending side,

there is another RSVP flow with sending rate equal to 18 megabit per second. We can

see that RSVP provides fair sharing of bandwidth because the average receiving delay

for the high-speed RSVP flow is 110 psec. This means that RSVP provides load-

controlled service but results in more frequent packet delay jitter. This experimental

result means that more frequent context switching occurred at the send-side host.

37

400

350

i 25o

15o
loo

Packets

Figure 3.7. Packet Receiving Delay in Multiple RSVP flows

For the case in which multiple RSVP flows are created, packet-access conflict

could happen inside switches if a switch does not have RSVP enforcement. The switch

will not reject a new RSVP flow even when the sum of bandwidth requirements of all

RSVP flows is beyond its capacity. So from the experiments on RSVP, we have proven

our research hypothesis that not only must the endpoint system provide guaranteed CPU

time for handling packet transfer, but also sub-network-wide resource reservation is

indispensable to provide conflict-free access inside switches and so achieve smooth end-

to-end delay.

We also found that RSVP flow introduced extra overhead on endpoint systems

because a reservation must be refreshed periodically to avoid the flow to be torn down

(Braden et al. 1997). Resources in RSVP are automatically released if the reservation

38

requestis not refreshed. However, for a sub-networkenvironment,keeping the flow

state becomes unnecessary because the routes will never change during the life of the

flow. In addition, some features such as policy control are unnecessary for sub-network

application because users have complete control over the sub-network. In the next

chapter, we present our communication layer design with a more efficient resource

reservation mechanism.

From the beginning, RSVP was designed to run on the IP protocol and as a

signaling protocol for resource reservation. This implies that it cannot be an optimized

method for a particular sub-network. An ongoing effort is RSVP on ATM. The

purpose is to integrate RSVP signaling and ATM signaling in support of Integrated

Services (Crawley et al. 1998). It involves two issues: QoS mapping from RSVP QoS

model to ATM QoS model and virtual channel (VC) management. Obviously if RSVP

can directly use the connection-oriented QoS of ATM network, guaranteed service can

be efficiently provided in high-speed sub-networks based on ATM. Even when an

RSVP implementation provides guaranteed services, it still has to depend on the

underlying link layer in order to provide bound delay; otherwise hard end-to-end QoS

cannot be provided.

39

CHAPTERIV

THE DESIGNAND IMPLEMENTATION OFCOMMUNICATION MIDDLEWARE

WITH QUALITY OFSERVICEGUARANTEES

In this chapter, we describe the design and implementation of our

communication layer. Whereas RSVP is inefficient in managing resources for QoS

communication in high-speed sub-networks, our communication layer design and

implementation provide a more efficient resource management middleware.

Application Programming Interface Design

Alter carefully investigating the application programming interfaces (API) provided

by RSVP and the Tenet scheme, we decided that a scheme like RSVP using explicit

client-based reservation is not a good choice, because in a real-time distributed

computing environment each process can be a server and also as a client. It

consequently requires peer-to-peer communication (Arvid 1991). In RSVP and the

Tenet scheme, an implicit assumption is that a channel source or destination is a client,

and only the server handles multiple clients. It also implies that a client needs only

limited CPU processing power compared to the server. But in a high-speed sub-network

environment, all endpoint systems usually have the same or comparable processing

power.

40

Table4.1 lists the main API for our communication layer design. From Table 4.1,

we can see that the basic functions are simple and bear some characteristics of MPURT

(MPURT Forum 1998) and MPI (MPI Forum 1994).

Table 4.1. Communication Interface Functions

int RT Channel_create(int Src_rank, int Dstrank, QOS_t *qos, CHANNEL_t

*channel)

int RT Channel delete(CHANNEL_t channel)

int RT_Channel_modify(QOS_t *qos, CHANNEL t *channel)

int RT Channel status(CHANNEL t channel, CHANNEL STATUS t *status)

int RT Putmsg(CHANNEL t channel, char *msg, int size)

int RT Getmsg(CHANNEL t channel, char *ms 8, int *size)

int RT_Init(int ar_c, char *argv[])

int RT Finalize()

int RT Get rank(int *rank)

We view a channel's traffic is a part of QoS so as to simplify the definition. Only

one data type (character string) is supported because it is sufficient for investigating

QoS in sub-networks. Once a point-to-point channel is created, sending and receiving

messages will be under control of the QoS. Any channel that violates QoS will result in

messages being lost. Channel_t is an opaque object and is implementation dependent.

The function RT_Init creates a communication context, activates the packet scheduler,

and determines the available resources in an endpoint system and sub-network-wide

resources in terms of current configuration. Numbering each process's rank is done

inside this function; each process has a unique rank that is generated in terms of a

configuration file. In our implementation, we use a control thread to manage the

creation, deletion and modification of channels. The packet scheduler is also a bound

41

thread. RT Finalize will free all dynamically created system resources. After the

RT Finalize function call is invoked, receiving and sending messages are not allowed.

However RT Finalize will wait for all pending messages to be finished. The RSVP API

consists of four functions: rapi_reserve, raw_sender, raw_session and rapi_release

(Braden et al. 1997). These functions are similar to the Berkeley socket interface. Our

channel creation function combines RSVP's raw__reserve and raw_sender since our

model is based on peer-to-peer communication.

Implementation Description

Our implementation was accomplished on the Sun Solaris 2.6 operating system.

Figure 4.1 illustrates the implementation framework.

Communication API

Incoming [! Outgoing QOS Local and global

packet ueue] Packet queue Mapping f-NAdmissi°n Control

_. \ / \ L/z \Admitted
I Incoming I /Outgoing I I Resource [r',,,,,,.,,[Reau "
I Packet I Packet I I Manager I ZT""'_" L.----_-est arrives

Scheduler Schedulerl I I .nreaa I'-

!i.................. "--I-/Netw°rk API U_equest> i!1......Ic'
Incoming packets Outgoing packets

Figure 4.1. Communication Middleware Architecture

42

A controlthreadbehaveslike a daemon process. It receives control messages from

other processes or sends out control messages to other processes. Control messages

include creation, modification, deletion and status request of a channel, and so on. Each

process has a control thread. The thread running on rank 0 process is a master-control

thread, which is responsible for the allocation and management of global shared

resources. Control messages from non-master control threads (slave control threads) are

first sent to the master control thread, which will forward the control messages to other

control threads if the control messages are not intended to this process. In this way, the

master thread will have knowledge of all created channels so that it can do global

admission control.

Our implementation of the Class Based Queuing (CBQ) algorithm is

straightforward. Each channel will be classified in terms of its priority. The CBQ

scheduler will serve each priority class in round robin.

served in FIFO.

Channel establishment involves two phases.

In each class, channel will be

In the first phase, channel

establishment does its local admission test, and sends out the channel creation message

to the remote endpoint of the channel through master control thread. The second phase

is to wait for confirmation from the remote endpoint. Only when both endpoints pass

their local admission tests will a global admission test be conducted. If the global

admission test is also passed, this channel is established. Figure 4.2 shows the

procedure.

43

Completelydifferent from RSVPandthe Tenet admission tests, our method needs

only three main tests; it is not a hop-by-hop-based method since we limit our

middleware to a closed sub-network. In addition, our scheme requires that both

endpoints initiate channel reservation since our middleware is based on peer-to-peer

model.

Do local admission test

_, yes

Send Channelcreation [request to master thread

,_ yes

Channel is created I

_ r

Failure to create /

]channel

Figure 4.2. Flow Chart For Channel Creation

44

The channelscheduleris a boundthread for sending packets to the network. It

implements the CBQ algorithm and a queue is associated with each channel. The queue

size is determined by the QoS parameters during admission test. All queues will be

served by the scheduler during a quota of time that is ascertained during admission. In

our current implementation, priority and bandwidth percentage are supported and the

time quota is calculated in terms of the bandwidth percentage requested.

A more efficient way for channel admission is to use a collective admission-control

mechanism through a commit operation. Once committed, all requested channels are

created. The MPIART standard uses this mechanism (MPURT Forum 1998). A

collective admission-control mechanism also improves resource usage and the

probability that a channel can be admitted. The process of modifying a channel is

similar to the channel creation. Reducing quality of service will guarantee the success

of modification of a channel. Deletion of a channel will wait for the messages in the

queue associated with the channel at the sending side to be sent out before this channel

is removed. Deletion of a channel also needs a two-phase procedure.

When the application calls RT_Init, the resource object at each process will be

initialized in terms of user-provided configuration parameters. At the master process, it

also contains the descriptions of global resources such as network topology, switching

bandwidth, and so on. Besides creating a global communication context, its tasks also

include creating the daemon scheduling thread and the daemon control thread.

Figure 4.3 represents QoS structure used in the current design. Currently time-

driven QoS is not implemented since we do not have a hard real-time operating system.

45

The QoS definition also includes traffic definitions like period and minimum inter-

arrival time for non-period message stream. Traffic parameters are viewed as QoS

parameters. The QoS definition in this design is based on reliable data transfer. If a

statistical guarantee is needed, a probability parameter for timely delivery should be

added to the QoS parameter (a QoS formulation in which those packets that miss their

deadlines will be discarded). Loss-rate can also be added as one of the QoS parameters

since continuous media applications can tolerate loss-rate to a certain degree. For the

purpose of measurement, we associate a status structure with the channel so that the

application can get feedback about the current channel. The status query is important

for getting the desired QoS from the system.

At the beginning, the user usually has no idea how much QoS the system can

provide. The Status parameters include those actual QoS values achieved by the

channel, such as minimal inter-arrival time till the present time and average packet-

arrival time. It is also useful for the adaptive admission-control algorithm. Thus,

performance feedback from experience can be used to achieve higher utilization. In our

current implementation, the QoS mapper is straightforward since we did not directly use

QoS that the link-layer protocol provides.

46

typedefstruct_QOS_PRI
{

int pfi; /*
int bandwidth; /*

}QOS_PPd;

channel' s priority */

required bandwidth percentage */

typedef struct _QOS_TIME

{
float dmax;

float jmax;

int smax;

float period;
float xmin;

}QOS_TIME;

/* End-to-End delay upper bound */

/* End-to-End jitter upper bound */

/* the Maximum message size */

/* the message arrival period */

/* the minimum message arrival interval for

non-period message transfer */

typedef struct _QOS

{
int QosType; /* Twotypes of QOS

union

{
QOS_TIME _qosTime;

QOS_PRI _qosPri;

}qos;

}QOS_t;

*/

Figure 4.3. QOS Structure

47

CHAPTERV

MEASUREMENTAND ANALYSIS OF QUALITY OF SERVICE

This chapter presents the experimental designs and measurements of the

communication middleware that was described in Chapter IV. We offer detailed

performance analyses according to the experimental results. We measure the end-to-end

delay, delay jitter, and various effects caused by middleware, operating system and

networks to prove the research hypothesis.

Design of Experiments

In Chapter II, we said that bandwidth, delay, and jitter are the three most important

metrics of QoS communication. Bandwidth can be derived from packet size and packet

transfer delay. Loss rate is not concerned in our measurement since our implementation

is based on reliable communication. In addition to QoS, the sub-network-wide

admission-control strategy and the CBQ algorithm are evaluated.

One difficulty in analyzing the performance is that our communication layer runs

on a non-real-time operating system. POSIX thread

operating system does not support priority scheduling.

implementation on Solaris

There is no way to get

guaranteed CPU execution time for a bound thread. However we can find out the basic

thread-scheduling period from the operating system. Through a tracing of the thread-

48

schedulingcontext,we candeterminewhethera light-weight process(LWP) context

switching occurs. Table 5.1 lists the experiments.

Table 5.1. Communication Layer Measurement Experiments

Experi Purpose

-ments

Exp-1

Exp-2

Exp-3

Measure end-to-

end packet delay

and jitter.

Measure

bandwidth

reservation and

sharing.
Test sub-

network-wide

admission

control

Description

Create multiple channels under various conditions

(packet size, priority, and bandwidth requirements)

among a set of nodes. A typical case is that one

process create two or more channels with other nodes.

Create multiple channels among a set of nodes and
measure each channel's obtained bandwidth. In the

case of multiple channels sharing a link, each channel

should get its expected bandwidth.
Create various network load to test whether admission

control correctly reject or admit a new requested

channel. Typical case is that when the accumulated

bandwidth of a set of channels is beyond the capacity

of their shared physical link, or the switch capacity,
then admission test should fail.

The first experiment is a delay and jitter test.

will measure sending and receiving delay under various conditions.

include varying packet sizes, priorities, and bandwidth requirements.

In this experiment, the test program

Those conditions

A typical case is

that one node has two or more real-time channels with other nodes. Each channel has its

own QoS requirements. By measuring the each channel's end-to-end delay and delay

jitter, we can find out whether middleware can provide the expected QoS. If not, we

will track which factors cause abnormal delay and delay jitter. Another typical case is

that a node has multiple incoming channels from different sources.

49

The second experiment is a bandwidth reservation and sharing test. In our

implementation, the CBQ algorithm is used. Through creating multiple channels among

multiple nodes and measuring each channel's bandwidth, we can experimentally show

whether the CBQ algorithm provides expected bandwidth sharing and constraint delay.

QoS implementation in our middleware will let users specify bandwidth percentage and

priority.

The third experiment is a sub-network-wide admission test. Sub-network-wide

bandwidth reservation guarantees that there is no traffic conflict inside switches, which

is critical for middleware to provide hard end-to-end delay constraints. Actually, all

measurement programs written for the first and second experiments involve sub-

network-wide admission testing. Measurement programs in this experiment create

channels that will construct traffic conflict inside switches and see whether admission

control will detect this case and reject new admissions. Traffic conflict can also be

monitored directly from switches.

We expect that our middleware implementation would provide better end-to-end

delay and delay jitter than RSVP because of the simplified protocol processing and lack

of sof_-state refreshment mechanism. The CBQ algorithm implementation can provide

expected bandwidth sharing. Strict end-to-end delay cannot be obtained because of

context switching associated with thread scheduling, but within a scheduling period,

delay variance should be bounded. Sub-network-wide bandwidth reservation ensures

that no traffic conflict occurs inside switches.

5O

The experimental testbed is illustrated in the Figure 5.1. It is similar to the one

described in Chapter III. Here we use two Extreme brand gigabit switches. The link

between host and switch supports full duplex 100 megabit per second bandwidth. The

link between two switches supports gigabit per second bandwidth. Five Sun Ultra-

SPARC workstations are connected to these two switches. The workstations run the

Sun Solaris 2.6 operating system.

 --qs I

S: Extreme gigabit Ethernet switch
H: Sun Ultra-SPARC workstation.

100 megabit per second link

1 gigabit per second link

Figure 5.1. Experimental Testbed

Analysis of Experiment Results

Figure 5.2 shows receiving packet delay jitter at a channel endpoint. In this

experiment, one process has two outgoing channels connected to other two processes.

All processes run on different nodes within a sub-network. We first let traffic

generators produce slow traffic so that the scheduler will have sufficient time to process

the arriving packets with an appropriate queue size. Admission test will guarantee that

once a channel is admitted, the queue will never overflow if the sending side keeps its

51

promisedtraffic rate. Two channelsourcesproducea volumeof 800K bits per second

of traffic. Eachchannelrequests50% of bandwidthand eachhasthe samepriority.

Figure 5.2 showsreceivingdelayjitter of 100consecutivepacketsthat were randomly

sampled.During the whole life of thetwo channels,no queueoverflow wasobserved.

This meansthatthe packetscheduleris fastenoughto handleall incomingpackets. In

our implementation,oncequeuesoverflow,the inputstreamswill beblocked.

400000

w 350000

300000
m

250000
.D

E
C

200000

150000
M

m

100000

50000 LAJ
Packets

Figure 5.2. Receiving Delay Jitter with Interruption From Packet Generator, Test 1

From Figure 5.2, we see that receiving 12, 25, 44, 49, 64, 75, 96, and 99 packets

cause huge delay jitter when compared to other points. Through tracing the thread

scheduling point, we found that those points are exactly located at thread context-

switching points. The operating system switches out the packet scheduler and runs the

packet generator. However, in many practical systems, especially embedded systems,

52

the input data source is usually done by an external device and does not compete for

CPU resources. So we may ignore the delay caused by the packet generator. Figure 5.3

is the case in which all thread-switching points are removed.

600-

! °IAoo A
IllJ/Jill

200

' lYV/IV\.i ,oo A^

A
II

, lllllA

Packets

Figure 5.3. Receiving Delay Jitter Without Interruptions, Test 1

We did not find a smooth delay jitter either. Through further tracing of the

behavior of the scheduler, we found that the jitter in Figure 5.3 was caused by the

scheduling algorithm itself. In order to maintain bandwidth sharing, the implementation

of CBQ uses the system function gettimeofday to obtain the current time and to compute

the elapsed time and then calculate actual bandwidth that this channel obtains. The

scheduler alternatively serves each channel. We observed that when the CBQ packet

scheduler serves multiple packets within a scheduling period, delay jitter among those

packets are smooth. The other factor that causes receiving delay jitter is that, at the

53

receiving side, the RT._getmsg call may be interrupted by thread context switching.

From two channel's average delay jitter (157 _tsec and 150 _tsec, respectively), the CBQ

packet scheduler does provide fair sharing of bandwidth.

Then we increased the packet generation rate to 1,600K bits per second and re-ran

the measurement program. The effect caused by the thread scheduler was still observed.

However, we found that only three receiving packets were affected by thread context-

switching within 100 consecutive packets (see Figure 5.4 and Figure 5.5). This means

that there are more packets available within a scheduling time slot for a channel because

of the fast packet generation rate. If no packet is available within a packet-scheduling

period, the scheduler will be in an idle state. The small jitter noted is mainly caused by

thread context switching at the sending side or receiving side since the middleware can

experience thread context switching between the scheduler thread and other system

programs. The above experiments can partially prove our hypothesis that smooth end-

to-end delay could be obtained if input packet queue never overflows and the scheduler

gets guaranteed CPU processing power and is not interrupted by other processes or

threads. We also measured delay and delay jitter in the situation that multiple channels

are active simultaneously; the observed results are same as the two-channel case.

54

350000

300000

0

250000

200000

150000

100000

50000

Packets

Figure 5.4. Receiving Delay Jitter With Interruption From Packet Generator, Test 2

N

I

i
ng

IAl ,
/Ilia A

_v/-''_V " v "_/'" " W PC W

iA
I'

v Vf F''-

Packets

Figure 5.5. Receiving Delay Jitter Without Interruption From Packet Generator, Test 2

55

We found that CBQ provides desired bandwidth sharing. Figures 5.6 and 5.7 show

packet-transfer delay for a bandwidth-sharing test. In this experiment, we suppose

packets are from an external port and do not consume the CPU resources of the sending

endpoint system. Two channels of the same priority each request 35% of the raw

bandwidth. Since clocks at all endpoint systems are not synchronized, a packet transfer

delay is calculated as the packet arrival time minus packet sending time with a

modification of a constant value. The constant value is obtained through measurement

and is equal to the system clock difference between two endpoint systems. We can see

that the bandwidth is fairly shared between two sending channels at the sending host.

Figure 5.8 represents the situation of two channels with different QoSs, with one

requesting 50% of the bandwidth and the other requesting 20% of the bandwidth. Each

channel gets its desired bandwidth share. As for the delay fluctuations in the low-

bandwidth channel, they are caused by the scheduling algorithm itself. The figure also

shows that the scheduler does not send out a packet every scheduling period so as to

give fair bandwidth sharing among channels.

56

700],At60O

500-400 Ji J, . I _ Ai,I_
i/I/lA/_/_L,AAI_,,AAII,A,AAA/UU,AII,AIIAII^AIIA,A.I_,,

,oo11_IAlVV{I/'vvVVVVVVIIVVVVV'}NvvlIv'vvvvvvlN'_IIA
200 • •

100

Figure 5.6. Packet Transfer Delay on Channel 1 - Bandwidth Sharing Test 1

800

700600
=o

_E 500
>,

t_ 400

300

i._ 200
'=

100

It\ _/IAliIA/IAAAAAAAAAA

I/,,_IAVlllll,lllllllllllillll_,_111IIIIliJ,V'VVtAIVIVVVV_I_IVV'VVVkA,

_ AAA_AIIAIL_AA,AAAAA
Al_ItllliltlilllIIILIIIUUULILI[
I=IVVVUVVIVVVi/VVVVVI

Figure 5.7. Packet Transfer Delay on Channel 2 - Bandwidth Sharing Test 1

57

1800

160o
O

,,oo
Jill ill _ ii i ,li.ili_ili l.ill I,I liilliii

AAAAA I,MAAA A FIAA/IAA IAAAUAAA ArIM
'2°°I III'VVlIVVVIIIVVVVI'VVVVVVV' VVVVvl/vvvvvvIIvVVVVll

__1ooo _ I'I I r 1' I 1 w I I 1 'I I I'I ' ! I I 1 1

i 600 ", • ' vv • VV _' ,- v

0 _ I,T 51 i] T@,,l ITl 11115_ [I I111111?,I I I,, T@l Illl I IT@ @I I III] T T I I I , @ _ @ I I I r I T I I I I

P_k_s

Figure 5.8. Packet Transfer Delay on Two Channels - Bandwidth Sharing Test 2

Figures 5.9 and 5. l0 show end-to-end receiving delay in the situation in which a

node has two receiving channels. Differing from the case of one node having two

sending channels, our communication layer does not have an incoming packet scheduler

since receiving a packet is passive. It is not necessary to introduce an incoming packet

scheduler, which only adds overhead to the whole communication layer. In this test

program, the packet receiver is running on a twooCPU symmetric multi-processing

machine so as to greatly reduce effects that thread scheduling causes. The test program

for receiver has two independent receiving threads to receive messages from two

different channels. The two channels have the same priority and each ask for 50% of

the bandwidth. The packet generation rate is 32 megabit per second. Our explanation

of the difference between the two channels is the difference in system load at the two

sending nodes.

58

_. 600

i 500

2
0

400

300

200

1i_ 100

[
.I

Packets

Figure 5.9. End-to-End Packet Receiving Delay on Channel] - One to Many Case

,... 500

i 450
400

2
u 350

'_ 300

._ 250
'- 200

'_ 150

J_ 100

-_ 50
=- 0

i
,A AAAA^AAAA AAAA J
_/VVIA/vvvv'vvvvVVV'V
|- '_' ! I ! 11 !

AA]_ .AAAA

.IIAllA/!
"VVVV_rvlVll I,

'li vl V

Packets

Figure 5.10. End-to-End Packet Receiving Delay on Channel 2 - One to Many Case

59

We tested our sub-network-wide admission-control mechanism under various

conditions. It provides the expected behavior. For a new channel with an overage of

QOS, global admission rejects this channel. When the accumulated bandwidth of all

requested channels is larger than the capacity of a switch, we observed that the global

admission test rejected the channel and resulted in admission failure. Sub-network-wide

admission-control guarantees conflict-free access to the shared switches so that the

switches can give bounded service time to each packet because queue overflow will

never happen. The case where a low-priority channel is starved will never happen.

Once a channel is admitted, the switch can always provide this channel with requested

bandwidth.

Summary of Experiments

In the first experiment, we did not choose a high packet generation rate though

network raw bandwidth can reach 100 megabit per second. That is because the packet

generator and the packet scheduler sharing the CPU resources and multiple connections

originating from the same node would make the scheduler unable to handle all incoming

traffic. We also experimented with the effects of a queue overflow. A queue overflow

will result in an indefinite packet transfer delay whose value depends on the queue size,

packet arrival rate and channel bandwidth. For a given queue size and channel

bandwidth, the faster the packets arrive, the more frequent the queue overflows. In the

experiments, our data is sampled and is based on a small number of channel connections

since they are sufficient for analyzing our communication layer. More complicated

experiments were also conducted with equivalent observed results.

60

From the experimentalresultspresentedin this chapter, we can conclude that our

communication middleware implementation is able to provide smooth end-to-end delay

for a channel and the CBQ algorithm can provide fair bandwidth sharing if the

underlying operating system can provide a guaranteed thread execution quantum. In

other words, the middleware will be able to provide better performance in a real-time

operating system. The experiments on this communication layer again confirm the

research hypothesis.

Though middleware as an add-on component to the operating system cannot

provide hard end-to-end QoS, our experiments provide some insights for QoS in a

closed sub-network. Specifically, sub-network-wide bandwidth reservation mechanism

can provide conflict-free access

communication in a sub-network.

inside switches, which is a key point for QoS

Though RSVP on the switches can also realize

bandwidth reservation, our method is much easier and more efficient when compared to

RSVP method. Table 5.2 shows a summary of experimental results.

61

Table5.2. Summaryof Experimental Results

Experi

-ment

ID

Exp-1

Exp-2

Exp-3

Results

Packet transfer delay
can't be bound if

packet scheduler can't

get guaranteed CPU
time.

CBQ algorithm can

provide expected

bandwidth sharing and

but not delay bound.
Sub-network-wide

admission control can

provide expected
behavior.

Significance of Results

It confirms the research hypothesis.

Guaranteed CPU time for packet

scheduler is indispensable to obtain hard

end-to-end delay.

It also proves the research hypothesis,

packet scheduling algorithm and

associated QoS description will affect the

extent that QoS can be achieved.

Sub-network-wide admission control

guarantee conflict-free access to the

switches. Bound link-layer transfer delay

becomes possible.

62

CHAPTERVI

CONCLUSION

In this chapter,we summarizethe presentwork andpresentthe conclusionsthat

speakto theresearchproblems.Wealsopresentthe lessonswe learnedfrom this thesis

study. Furthermore,futurework andtheimplicationsof this studyarealsoindicated.

Summary_ of Research Results

In this thesis, we made an in-depth analysis of various factors that affect QoS in

packet-switching networks. Particularly, we focused on what endpoint systems can do

for QoS communication in a closed high-speed sub-network in which switches provide

only limited link-layer QoS, and lack sub-network-wide bandwidth reservation and

dynamic session-based QoS support. In Chapter IV, we presented a sub-network-wide

bandwidth reservation scheme that is a part of admission control in our implementation.

Sub-network-wide admission control provides conflict free access to switches. Based

on that, we designed and implemented a communication layer with QoS guarantee. Our

experimental results on communication layer showed that hard end-to-end delay can be

achieved if endpoint systems provide guaranteed CPU processing power for the packet

scheduler. This proved the research hypothesis. That is, sub-network-wide bandwidth

reservation and guaranteed CPU processing power at hosts for handling data traffic are

both indispensable to achieving hard end-to-end quality of service. Our experimental

63

resultson aclass-basedqueuingalgorithmalso show that CBQ can provide percentage-

based bandwidth sharing and its implementation is also relatively simple when

compared to other queuing algorithms. But it cannot provide bound end-to-end packet

transfer delay.

Experiments on IEEE 802.1p protocol showed that the protocol provides

reasonable bandwidth sharing among connections with the same priority. However, its

packet-transfer delay is not guaranteed at all for connections on a low-priority port.

This means that priority-based packet scheduling is not suitable for QoS

communication. Our analysis and experiments on RSVP showed that as a resource

reservation protocol, RSVP is inefficient in closed, high-speed sub-networks. RSVP's

receiver-initiated reservation strategy is not suitable for real-time distributed computing.

In addition, the traffic model in RSVP is only suitable for continuous stream media, and

using this model to describe non-periodic control messages will result in over-reserved

resources. On the contrary, our communication layer provides a more efficient resource

reservation method in which no refreshment is necessary and no hop-by-hop method is

used for the admission test. Using RSVP for the hard QOS also requires guaranteed

CPU time for the packet scheduler, which confirms the research hypothesis.

Lessons Learned

We learned several lessons from designing, implementing and experimenting

with the communication layer. First we spent a large part of the time to track the

system's behavior and tried to investigate various factors that cause the packet-transfer

delay. The operating system scheduling heavily affects the packet-transfer delay.

64

Characterizingendpointsystembehaviorbecomesnecessaryfor preciselyanalyzingthe

time spenton individual activities. A simple fact is that it will take significant CPU

time for fully using gigabit-per-secondbandwidth,

coprocessorsmustbe introducedto offioad the CPU.

or else programmable protocol

In other words, in a gigabit-per-

second sub-network, endpoint system behavior will significantly affect network end-to-

end packet transfer delay and jitter.

The second lesson learned during implementing and testing scheduling algorithms

was that not only must the scheduling algorithm itself be simple, but implementation

also needs to be highly efficient since scheduling algorithms will add overhead to

message transfer. In a gigabit per second sub-network, the complexity of the algorithm

may improve bandwidth usage or result in better fairness, but it usually consumes more

CPU time, which in turn affects packet-transfer delay. That is a practical reason why

most commercial gigabit per second switches do not provide dynamic session-based

QoS. The packet scheduler would be better as a part of the operating system and more

efficient transfer and control protocol should be used for improving performance. In

particular, a real-time operating system is desirable on the endpoint system in order to

obtain completely predictable behavior. A programmable Network Interface Controller

(NIC) of sufficient speed could also help.

Future Work

This thesis is basically experimental research on QoS communication in high-

speed packet-switching sub-networks. Several aspects of this research can be continued

65

in the study of QoS communication in high-performance embedded multi-computer

systems (such as the Mercury RACE-Way system) (Mercury 1999).

Meta-computing is a hot research topic. Globus (Foster and Kesselman. 1997) is

such a system that is based on MPI and TCP/1P. It organizes computing resources at

different geographical locations into a meta-computer. A parallel application can access

any CPU resources belonged to this meta-computer through using its G-MPI interface.

However, currently it provides only limited QoS support. Obviously QoS support is

necessary in such a system to achieve high performance and avoid communication and

computing bottlenecks. Local and sub-network admission-control mechanism can be

extended as node and sub-network resource management agents, respectively. By

adding a global meta-computer-wide resource management agent, a three-layer resource

management architecture could be set up to manage communication and CPU resources

and improve overall performance. This could create a quality of service architecture

instead of the current "sum-of-services" architecture.

Another interesting research field is to use our current communication layer as a

tool to study the performance of different scheduling algorithms. Most performance

analysis on packet-scheduling algorithms are theoretical or use a simulation method.

Implementing different algorithms under same system environment and then comparing

their performance, schedulability, and scalability would be significant contributions.

66

REFERENCES

Arcs, C., J. Kurose, D: Reeves and H. Schulzrinne. 1994. Real-time communication in

packet-switching networks. In Proceedings of the Institution of Electrical Engineers

82(1): 129-39.

Arvid, K. 1991. Protocols for

University

of Massachusetts at Amherst.

distributed real-time systems. Ph.D dissertation.

Banerjea, A., D. Fen'aft, B. Mah, M. Moran, D. Verma, and H. Zhang. 1996. The Tenet

real-time protocol suite: design implementation, and experiences. IEEE/ACM

Transactions on Networking 4(I): l-l 0.

Braden, R., L. Zhang, S. Berson, S. Herzog, and S. Jamin. 1997. Resource ReSerVation

protocol (RSVP) -- Version I functional specification. Internet Engineering Task

Force(IETF) RFC 2205.

Cilingiroglu, A., S. Lee, and A. Agrawala. 1997. Real-Time communication. College

Park, MD: University of Maryland, Department of Computer Science. Technical

Report UMIACS-TR-97-04.

Clark, D., S. Shenker, and L. Zhang. 1992. Supporting real-time applications in an

integrated services packet network: Architecture and mechanism. ACM SIGCOMM

Symposium on Communications Architectures and Protocols: 14-26.

Crawley, E., L. Berger, S. Berson, F. Baker, M. Borden, and J. Krawczyk. 1998. A

framework for integrated services and RSVP over ATM. RFC 2382.

http://www.isi.edu/div7/rsvp/pub.html (Accessed 01 March 1999).

Cruz, R. 1991. A calculus for network delay, part I: Network elements in isolation.

1EEE Transactions of Information Theory 37(1):114-21.

Demers, A., Keshav, S., and S. Shenker. 1989. Analysis and simulation of fair queuing

algorithm. In Proceedings" of ACM SIGCOMM'89, 1-12. Austin TX: ACM
Publications.

67

Ferrari, D. and D. Verma. 1989. A scheme for real-time channel establishment in wide

area networks. University of California at Berkeley, International Computer

Science Institute. Technical report TR-89-036.

Ferrari, D. 1992. Design and applications of a delay jitter control scheme for packet

switching internetworks. Computer Communications 15(6): 367-73.

Floyd, S. and V. Jacobson. 1995. Link-sharing and resource management models for

packet networks. IEEE/ACM Transactions on Networking 3(4):365-86.

Foster, I. and C. Kesselman. 1997. Globus: a metacomputing infrastructure toolkit.

International Journal Supercomputer Applications_ 11 (2): 115-128.

Golestani, S. J. 1990. Congestion-free transmission of real-time traffic in packet

networks. In Proceedings of IEEE INFOCOM, 527-42. San Francisco, CA: IEEE

Publications.

Ghanwani, A., J. W. Pace, and V. Srinivasan. 1997. A framework for providing

integrated services over shared and switched LAN technologies.

Engineering Task Force (IETF). Internet Draft.

Internet

Hyman, J. M., A. A. Lazar and G. Pacifici. 1991. Real time scheduling with quality of
service constraints. IEEE Journal oll Selected Areas in Communications 9(7): 1052-

63.

IETF. 1999. Integrated service mappings on IEEE 802 networks.

http://search.ietforg/internet-dratts/dratt-ietf-issll-is802-svc-mapping-03.txt

(Accessed 01 March 1999).

IEEE 1999. IEEE 802.1Q virtual bridge local area networks

http://grouper.ieee.org/groups/802/l/vlan.html (Accessed 25 February 1999).

Kurose, J. 1993. Open issues and challenges in providing quality of service guarantees

in high-speed networks. ACM Computer Communications Review 23(1):6-15.

Malcolm, N. and W. Zhao. 1995. Hard real-time communication in multiple-access

networks. Journal of Real-Time Systems 8: 35-77.

McDysan, D. and D. Spohn. 1995. ATM theory and application. McGraw-Hill Series

on Computer Communications.

Mercury Computer Systems Inc. 1999. The Race network architecture.

http://www.mc.com/techlit/ (Accessed 25 January 1999).

68

Mizunuma,I., C. Shen and M. Takegaki. 1996. Middleware for distributed industrial

real-time systems on ATM networks. A Mistsubishi Electric Research Laboratory.

Technical report TR96-10a.

MPI Forum. 1994. Document for a standard message-passing interface. Knoxvile. TN:

The University of Tennessee at Knoxville, Department of Computer Science.

Technical Report CS-93-214.

MPURT Forum. 1998. Document for the real-time message passing interface(MPI/RT)

standard, http://www.mpirt.org/ (Accessed 25 January 1999).

Parekh, A. 1992. A generalized processor sharing approach to flow control in integrated

services networks. Ph.D dissertation, Massachusetts Institute of Technology.

Shen, C. 1996. On ATM support for distributed real-time Applications.

http://www.merl, corn/ (Accessed 25 January 1999).

Turner, J. S. 1986. New directions in communications. IEEE Communications 24(I 0):

8-15.

Wrege, D., E. Knightly, J. Liebeherr, and H. Zhang. 1996. Deterministic delay bounds

for VBR video on packet-switching networks: fundamental limits and practical

tradeoffs. IEEF_/ACM Transactions on Networking 4(3):352-362.

Zhang, H. and D. Ferrari. 1993. Rate-control static-priority queuing. In Proceedings of
IEEEINFOCOM'93 1:227-36. San Francicso, CA: IEEE Publications.

Zhang. L. 1991. Virtual Clock: A new traffic control algorithm for packet-switching

networks. A CM Transactions on Computer Systems 9(2): 101-124.

Zheng, Q., K. Shin, and C. Shen. 1994. Real-time communication in ATM network In

Proceedings of 19 th Annual Local Computer Network Conference, 156-65.

Minneapolis, MN: IEEE Publications.

69

APPENDIX

EXPERIMENTAL MEASUREMENTS

In this appendix, the data obtained in each experiment are listed. In each table, the

first row represents the sequence numbers of sampled data packets. 1-26 means packet

number 1 to packet number 26. Each column lists corresponding data values.

Table A. 1. Data for Figure 3.4, End-to-End Packet Delay

Unit: psec

1-26 27-52 53-78 79-104
101 104 41 48
156 88 198 205
46 101 46 46
137 87 83 134
43 95 102 45
79 85 85 137

42 107 93 46
146 89 83 84
47 99 99 104
476 85 90 87
56 96 102 102
146 83 87 88
47 103 93 97
81 88 83 85
42 102 101 99
81 87 89 86
44 97 104 102
147 84 85 88
45 103 96 97
208 88 84 88
103 102 100 102
91 85 89 86
96 159 104 97
130 203 87 84
48 95 156 101
83 90 142 89

105-130 131-156 157-182 183-208 209-234 235-256
189 103 107 100 101 95
136 89 88 85 !90 86
44 98 95 100 126 99
180 84 85 88 134 86
43 102 99' 99 45 98
82 87 88 86 139 86
104 100 103 102 49 103
86 89 88 86 84 88
43 97 93 158 103 99
141 85 85 141 87 87
50 107 106 45 93 95
139 87 88 208 86 87
44 102 104 47 103 103
135 88 87 133 87 86
42 97 95 46 106 104
137 83 83 139 86 87
97 102 101 44 97 97
86 86 88 83 83 84
105 105 108 105 102 102
85 89 88 89 87 87
101 98 95 100 97 95
87 84 82 88 87

!97 96 101 96 102
85 86 87 85 87
102 97 101 106 104
86 89 87 88 86

70

1-26

51

172

43

38

39

36

37

39

38

40

942

41

37

37

37

37

9151

101

80

37

35

37

36

37

34
35

Table A.2. Data for Figure 3.5, End-to-End Packet Delay

Unit: I.tsec

27-52 53-78 79-104

145 2843 37

204 41 35

40 37 36

35 37 36

35 37 38

35 38 1109924

115 3681 :42

36 40 36

40 36 204

159 37 38

891 36 36

40 39 36

36 3300 39

37 39 679

36 35 39

35 35 150

37 36 129

1983985 38 134

47 3647 41

38 38 36

38 35 36

156 36 140

37 35 39

39 37 124

35 1877937 40

39 45 122

105- 131- 157- 183-
130 156 182 208

39 40 38 128

34 117 152 39

122 40 39 208

37 36 35 41

131 36 41 175

39 35 36 131

123 134 35 38

40 38 34 128

35 131 135 40

126 40 868 123

36 35 122 40

176 35 38 34

41 183 122 126

34 433 38 36

37 38 74 129

873 147 36 39

178 39 71 34

85 125 38 35

115 130 35 128

39 39 38 685

73 35 34 38

36 35 34 35

70 36 143 35

37 35 35 151

35 37 131 40

138 568 39 132

209-234 235-256

41 36

36 37

34 35

36 38

37 960765

280 49

43 35

121 35

39 36

35 37

132 39

39 323014

121 42

39 36

34 35

35 36

36 37

1629770 39

46 66108

37 39

38 36

39

36

4O

353353

43

71

Table A.3.

1-26 27-52

156 113

55 89

116 114

101 96

119 115

101 97

117 113

99 91

113 114

99 96

112 120

91 96

114 116

91 97

111 115

90 94

111 116

174 95

124 115

98 90

198 115

100 176

119 127

90 92

81 81

89 172

Data for Figure 3.6., Packet Receiving Delay in Single RSVP flow

Unit: I.tsec

53-78 79-104

202 116

57 99

118 114
86 97

80 114

52 97

199 114

126 54

83 154

96 167

113 121

95 170

114 128

96 92

115 8O

93 52

117 244

54 87

114 81

90 94

114 114

97 94

115 113

97 94

114 112

94 52

105-

130

78

132

115

96

148

92

179

93

82

85

80
9O

113

92

203

94

81

95

114

89

112

97

114

101

211

92

131-156 157-182 183-208

83 152 80

97 88 96

114 116 229
95 96 170

114 231 86

93 93 196

114 81 205

94 89 57

116 114 78

97 54 52

116 151 235

98 54 169

113 143 122

53 93 54

151 117 76

54 122 53

148 80 150

98 92 88

115 114 235

1O0 93 93

252 113 80

57 54 91

119 150 109

98 54 54

79 265 148

52 93 170

209- 235-
234 256

198 149

58 89

84 116

127 97

81 109

93 95

114 115

95 99

116 113

97 97

113 115

53 90

151 110

91 90

113 112

95 90

114 109

97 89

115 113

95 184

111 125

95

112

53
143

55

Table A.4. Data for Figure 3.7, Packet Receiving Delay in Multiple RSVP flows

72

1-26

141
109
88
59
214
114
167
105
87
112
188
64
269
110
170
107
135
197
137
108
89
150
87
110
222
65

27-52

181
136
136
103
89
232
95
150
89
60
85
153
167
108
129
60
129
110
168
140
131
203
92
106
128
193

53-78

138
67
88
114
188
63
268
108
89
116
124
61
133
66
172
144
262
68
130
64
86
59
168
205
177
63

Unit: _tsec

79-104 105-130 131-156 157-182

89 94 128 86
58 110 147 111
86 128 178 126
256 151 105 60
180 135 91 137
102 105 137 107
90 88 90 266
105 63 61 98
89 137 228 88
59 64 230 147
85 344 135 90
150 100 64 61
175 91 86 266
166 148 58 112
171 88

59
85
25O

253
7066

89 135 181 240
60 106 106 68
85 165 93 140
156 137 146 106
170 90 90 137
103 147 59 110
173 90 86 92
104 117 308 155
91 137 172 91
202 63 63 108

183-
208
136
63
169
108
171
104
90
146
89
61
133
108
173
103
93
61
270
65
181
2O0
171
63
87
59
87
107

209-
234
320
66
88
105
127
61
87
153
174
107
89
61
167
63
359
150
134
62
86
58
241
65
271
107
172
63

235-
256
88
106
91
115
133
106
177
228
179
63
87
60
273
137
229
62
90
59
185
100
170

73

Table A.5. Data for Figure 5.2, Packet Receiving Delay Jitter

Unit: gtsec

1-20 2140 41_0 61-80 81-99
515 91 61 222 107
96 61 81 66 169
480 81 400 81 138
92 475 117241 358819 93
371 268463 107 89 200
135 216 58 518 139

110 44461 92 10663
82
425
89
406
287138
183
108
92
62
166
64
9O
149

129
205
179
67
88
61
324
67
89
112
188
66
86

75362
173
66
86
58
44233
195576
182
108
91
61
88
115

479
190
66
390
65
87
57
198243
281
67
89
61
137

94
61
170
66
85
62
83
565
117462
103
60
43949

74

Table A.6. Data for Figure 5.4, Receiving Delay Jitter

Unit: lasec

1-20 2140 41_0 61-80 81-99

93 132 124 185 64

116 138 105 65 510

126 92 127 91 69

205 113 114 63 145

94 123 123 191 112

61 111 143 209 167

85 355 92 96 198

61 69 112 62 226

80 148 123 87 69

308501 163 116 63 141

99 144 125 81 106

522 104 145 619 93
96 92 93 7403 139

473 63 347 71 93

135 172 142 303251 145

64 150 66 102 93

450 92 87 596 102

68 134 61 98 130

91 92 273 475 115
135264 115 116

75

Table A.7.

1-20

204

523

120

510

337

168

142

122

283

146

383

181

447

242

440

2OO

532

295

324

144

Data for Figure 5.6, Packet Transfer Delay

Unit: Bsec

21-40

323

268

441

238

423

228

488

288

385

184

41-60

227

322

122

390

181

355

151

387

187

404

203

61-80

121

312

181

435

233

583

215

348

144

393

188

469

81-100

199

462

228

403

289

315

176

352

149

308

233

495341 383

195 181 267 267

334 457 371 432

203 244 180 226

369 601 473 320

235 208 229 143

369 620 374 354

194 297 225 144

616 329 439 274

146

76

Table A.8.

1-20

151

332

220

586

425

393

194

328.

385

195

497

318

530

218
5O3

159

667

138

325

136

Data for Figure 5.7, Packet Transfer Delay

Unit: ktsec

2140 41_0 61-80 81-100

460 460 533 686

199 200 197 304

555 492 459 539

198 191 149 157

556 464 355 529
153 160 162 146

541 575 462 553

194 273 199 142

499 462 497 435

149 201 196 199

538 496 492 518

131 201 131 199

526 482 580 545

133 159 195 177

522 371 497 537

128 162 149 157

575 307 593 499

198 124 198 133

321 460 496 516

120 197 148 128

77

Table A.9. Data for Figure 5.8, Packet Transfer Delay

Unit: lasec

l-lO I 1-20 21-30
1458 892
1585 1462
818 949 747
824 1464 1368
1190 887 1402
1281 1403 1381
774 1090
1455 1474
1151 902
1470 1471

31-40 61-70

1074 953 975
1455 1472 1456

1040
1449
88O
1396

Upper curve:
41-50 51_0

715 910
1423 1471
928 1034
1470 1466
1036 885
1470 1445
886 1103
1405 1479
1084 698
1475 1447

882
1402
1034
1470
8821497 1043

1473 1476 1413
881 871 1052
1400 1420 1476

71-80
879
1469
982
1466
883
1401
1051
1477
920
1445

81-90
1041
1460
928
1402
1203
1471
873
1469
1040
1472

91-100
900
1473
1021
1467
883
1450
1039
1473
884
1467

1-10 11-20
650 391
340 455
429 453
186 644
205 595
281 690
377 644
249 714
134 567
246 689

Down Curve:

21-30 3140 41-50 51_0 61-70 71-80
563 652 631 675 606 211

676 670 697 695 498 223
599 600 695 705 489 295
710 710 710 713 362 353
564 549 563 515 384 406
679 638 678 636 299 580
587 541 591 517 236 619
707 695 709 646 202 565
596 624 599 580 157 589
713 716 717 703 120 539

81-90
638
589
707
333
601
593
571
691
589
707

91-100
645
711
564
679
571
689
594
712
551
667

78

Table A. 10. Data for Figure 5.9, End-to-End Packet Receiving Delay

Unit: lasec

1-20

233

338

329

129

213

203

479

509

516

120

213

245

232

222

280

276

275

209

276

207

2140 41_0 61-80 81-99

269 260 267 266

206 286 264 261

269 353 269 273

265 347 263 267

278 336 268 270

271 324 261 211

271 282 274 268

204 271 268 264

266 272 268 270

203 205 209 265

267 269 270 268

261 265 264 263

274 269 269 269

268 264 263 264

266 268 271 269

202 262 266 264

334 273 269 270

328 267 262 267

264 268 270 267

262245 262 264

79

Table A. 11. Data for Figure 5.10, End-to-End Packet Receiving Delay

Unit • l.tsec

1-20
336
157
276
120
154
257
381
279
412
298
415
292
412
275
341
292
415
316
410
290

2140 41_0 61-80 81-99
411 408 225 207
325 285 368 337
404 411 140 345
287 333 304 351
411 412 294 357
331 290 405 324

388407 414
182

226
348 321287

407 308 267 395
327 396 406 320
409 282 210 385
322 411 350 328
409 344 218 392
352 412 360 316
353 242 446 320
327 353 382 282
414 231 348 222
308 369 256 260
416 227 226 134
285 371 260 173

80

